

High Performance Fluoroelastomers

Product Comparison Guide

How to use this Guide

With harsher chemical environments, broader temperature ranges and more complex and demanding designs, sealing applications are more extreme than ever before. There are also more elastomer options than ever before. Combine all of these issues and today's rubber chemists and design engineers face some tough decisions when it comes to material specification.

Dyneon[™] Fluoroelastomers

Dyneon's technical expertise and commitment to customer service help take the guesswork out of choosing the right fluoroelastomer for your application. This product comparison guide is designed to address the basic considerations when formulating a fluoroelastomer compound: "What is the environment?" "What is the application?" "What is the manufacturing process?" and "What is the part profile?" The answers to these questions will help narrow your search for a fluoroelastomer that will deliver optimal performance.

When you need further clarification or have a particularly challenging application, our Application and Product Development Engineers and Chemists are ready to help. You will find our contact information on the back cover of this brochure.

Table of Contents

3 What is the Environment?

- Effective Temperature Range of Dyneon[™] Fluoroelastomers
- Dyneon™ Fluoroelastomers Chemical Resistance

4 - 6 What is the Application?

- Transportation
- Pharmaceutical and Food Processing
- Fluid Handling and Environmental Control Systems
- Oil, Gas and Mineral Extraction
- Specialty Applications

7 What is the Manufacturing Process?

- Injection Molding
- Transfer Molding
- Compression Molding
- Extrusion
- Coating
- Post Curing
- Multifunctional Improved Productivity (MIP) Products

8 - 9 What is the Part Profile?

- Molded Shapes
- O-rings
- Extruded Shapes

10 - 15 Dyneon[™] Fluoroelastomers

- Typical Physical Properties
- Applications
- Product Distinctions

16 Enabling Technologies

- Dynamar™ Elastomer Processing Additive
- Dynamar[™] Rubber Curatives
- Bonding Technology
- Material Characterization
 - Permeation Testing
 - Compression Stress Relaxation (CSR)

17 Glossary of Terms

THE DYNEON™ FLUOROELASTOMER PRODUCT FAMILY INCLUDES...

- Fluoroelastomer (FKM) dipolymers and terpolymers containing 65-71% fluorine
- Base Resistant Elastomer (BRE) dipolymers and terpolymers
- Low fluorine terpolymers
- MIP Fluoroelastomers for improved productivity
- Low Temperature
 Fluoroelastomers

What is the Environment?

The first step in selecting the proper Dyneon[™] Fluoroelastomer for your application is to consider the service environment – the chemicals and temperatures your part will encounter. The charts below illustrate the broad chemical and temperature resistance of Dyneon Fluoroelastomers. Use these charts to guide your search for the Dyneon Fluoroelastomers that will deliver the desired performance for the environment.

If you do not find your chemical class here, please contact us at one of the locations on the back of this brochure or visit our web site, **www.dyneon.com**, for more information.

Effective temperature range of Dyneon™ Fluoroelastomers

Range based on retention of physical properties.

CHEMICAL RESISTANCE

	Dyneon™ Low Temperature Fluoroelastomers	Dyn Fluoroel	eon™ astomers	Dyne Base Resistar	eon™ nt Elastomers
	LTFE 6400X (67.1% F)	Dipolymers (66% F)	Terpolymers (68-71% F)	Dipolymers	Terpolymers
Oxidation	:	:	:	:	:
Ozone	÷	:	:	:	1 (C)
Radiation	:	:	:	:	:
Water < 100°C (212°F)	: :	:	:	:	:
Water > 150°C (302°F)	:	1	1	:	1
Lubricants	: :	See	e transportatior	n applications on	page 4.
Steam	:	:	:	:	:
Alkali (Dilute < 5%)		:	:	:	1
Alkali (Concentrated)	:	-	-	:	:
Acids	: :	:	:	:	1 (C)
Alcohol (Methanol)	:	-	:	:	:
Alcohols (Other)	1	:	:	: :	1. C
Aliphatic Hydrocarbons	:	:	:	:	:
Aromatic Hydrocarbons	:	:	:	-	1
Fuels	:	Se	e transportatio	n applications or	n page 4.

: Excellent Resistance (little or no effect)

1 Good to Excellent Resistance (moderate effect)

Not Recommended (substantial effect)

Ratings based on retention of physical properties.

What is the Application?

DID YOU KNOW...

- The specific gravity of Base Resistant Elastomers (BREs) is lower than standard fluoroelastomers.
- Dyneon has FE grades that extrude well without the need for a process aid.
- Fluoroelastomers can be bonded to plastics and sulfur- or peroxide-cured elastomers.
- Fluoroelastomers can be compounded to pass a -40°C mandrel flex test and to be conductive.

Transportation

The use of fluoroelastomers in transportation (automotive, aerospace, small engine, etc.) sealing applications has increased dramatically in recent years due to changing operating conditions.

Powertrain

Extended service life warranties demand more from powertrain seals. Due to their excellent chemical and temperature resistance, Dyneon[™] Fluoroelastomers offer improved sealing and wear resistance in powertrain applications that encounter aggressive fluids such as gear lubricants, transmission fluids and engine oils.

Lubricant Applications

Valve stem seals, rotary shaft seals (axle pinion seals, gear boxes, transmission seals, transfer case input/output seals), engine gasket seals, oil pan seals, cylinder liner seals, engine head gaskets

What's important for optimum performance?

- Chemical resistance to powertrain lubricants (amine resistance) and coolants
- Adhesion to metal or plastic substrates
- Service life

Fuel Systems

Regulations around the world continue to adopt more stringent fuel emission standards. Dyneon[™] Fluoroelastomers are commonly used in fuel system applications because of their excellent permeation resistance, effectiveness as barriers against evaporative emissions, chemical resistance to a broad variety of fuels and long-term durability.

Fuel Applications

Fuel line hose, filler neck hose, chemical transport hose, in-tank hose, injector o-rings, gas caps, sender seals

What's important for optimum performance?

- Chemical resistance to a wide range of fuels
- Permeation resistance (See chart at left)
- Volume swell and property changes over time
- Performance over temperature range
- Sealability

*CE10 = 90% RFC and 10% Enthanol (RFC = 50% Toluene and 50% IsoOctane)

FUEL AND LUBRICANT RESISTANCE

			F Dipo (60 R	Dyn luoroel olymers 6% F) ating	eon™ lastom Terpo (68-7	ers blymers 71% F) ating	Base Dipo	Dyn Resista olymers	eon™ int Elas Terpo	tomers olymers ating
Fuels	RFC (50% Toluene, 50% IsoOctane)	23°C, 7 days	(voiur	(5)	(volum	(2)	(voiur	ne Swell)	(volur	ne Swell)
		60°C, 7 davs	1	(15)	1	(11)				
	RFC/MeOH (15/85)	60°C, 7 days	-	(89)	1	(18)				
	RFC/MeOH (80/20)	23°C, 7 days	-	(37)	:	(5)	П	vneon	BRFe	aro
		40°C, 7 days	-	(41)	:	(10)	no	t recom	mendec	l for
	RFC/EtOH (90/10)	23°C, 7 days	1	(4)	1	(2)		fuel app	lication	ns
		40°C, 7 days	1	(20)	1	(16)				
		60°C, 7 days	-	(27)	1	(13)				
	RFD/EtOH (75/25)	23°C, 7 days	1	(12)	:	(3)				
		40°C, 7 days	-	(27)	:	(10)				
		60°C, 7 days	-	(35)	1	(16)				
	Peroxidized RFC, PN90	60°C, 7 days	1	(15)	1	(12)				
EP Gear	Chrysler™ MS-9763	150°C, 7 days	-	(0.9)	-	(1.8)	:	(5.4)	:	(1.6)
Lubricants		125°C, 42 days	-	(0.6)	1	(1.2)	:	(3.5)	:	(1.6)
	Chrysler™ MS-9020	150°C, 7 days	-	(1.3)	-	(1.3)	:	(4.2)	:	(2.5)
	Unocal™ 98-01-04 MPF Gear Oil - SAE 90	150°C, 7 days	1	(3.1)	:	(2.8)	:	(5.9)	:	(3.5)
Engine Oils	Mobil™ 1 5W-30	150°C, 7 days	-	(0.8)			:	(5.1)	:	(2.8)
	Chrysler™ MS-6395H (Mobil Type SJ)	150°C, 7 days	:	(0.5)	:	(0.6)	:	(7)	:	(2.6)
	SAE SF 105G Reference Oil	150°C, 7 days	-	(1)	-	(1)	:	(7)	-	(3)
	IRM 902 Reference Oil	150°C, 7 days	:	(1.1)	:	(1.1)	:	(5.5)	:	(2.7)
	IRM 903 Reference Oil	150°C, 7 days	:	(2.6)	:	(2.4)	:	(17.7)	:	(7.4)
	BP Caecilia C 20	150°C, 168 h	-		-	(2.6)			:	(3.5)
		180°C, 168 h	-		-	(4.2)			:	(4.4)
Transmission	Chrysler™ MS-9602	150°C, 7 days	1	(0.9)	1	(0.5)	:	(5.4)	:	(2.1)
Fluias		125°C, 42 days	1	(0.9)	1	(0.6)	:	(4.1)	:	(2)
	Chrysler™ MIS-7176	150°C, / days	1	(0.4)	1	(0.2)	:	(5.6)	:	(1.8)
	Dexron™ III	125°C, 42 days 150°C, 7 days	:	(0.3)	:	(0.2)	:	(3.9)	:	(1.2)
	(Petro Canada F-30102)	15000 7 1		(0)		(0)		(10)		(0)
		150°C, 7 days	1	(2)	1	(2)	:	(10)	:	(3)
	Ford - Exxon Type B	150°C, 7 days	1	(0.4)	1	(0.4)	:	(4.1)	:	(2)
	Ford - Exxon Type C	150°C, 7 days	1	(1)	1	(1)	:	(7)	:	(3)
	Ford Exxon Type D	150°C, 7 days	1	(2.3)	1	(1.7)	:	(0.8)	:	(3.2)
Bearing Grease	Amoco™ Rycon	150°C, 7 days	-	(3)	-	(2.9)	:	(5.8)	-	(4.4)
Droko Eluido		150°C 7 days		(25)		(4 7)		(E)		(11.2)
DIAKE FIUIUS	CaptrolIM (Dot 2/4)	150°C, 7 days		(20)	:	(4.7)	:	(5)	1	(11.3)
		125°C 2 days		(20)	1	(20)		(5.5)	1	(21)
Coolante	AC Delco Dex-CoolTM #10-101	120°C, 3 uays	-	(5)		(4)		(3)		(21)
Coolanto	Caterpillar™ Heavy Duty #8C-3684	150°C, 21 days	1	(23)	1	(16)	:	(3)	:	(12)
	Valvoline™ Zerex™	107°C 7 days		(0.5)		(1 1)		(0, 6)		(0.5)
	Prestone TM I ow Tox	107°C 7 days		(1.2)		(0.5)		(0.7)	•	(0.4)
	Prestone™ Extended Life	107°C, 7 days		(0.6)		(0.9)		(1.3)		(1.5)
	AC Delco Dex-Cool™	10700 7		(0.0)		(0.0)		(1)		(0.0)
	Extended Life	107°C, 7 days	:	(1)	:	(0.8)	:	(1)	:	(0.6)

: Excellent Resistance (little or no effect)

1 Good to Excellent Resistance (moderate effect)

Not Recommended (substantial effect)

Volume swell is not always indicative of chemical attack. Ratings based on retention of physical properties.

What is the Application?

Pharmaceutical & Food Processing

Often used in sealing/fluid handling systems, Dyneon[™] Fluoroelastomers help extend the life of capital equipment by providing long-term sealing and protection against high temperatures and corrosive chemicals.

Applications

Butterfly valves, ball valves, pumps, o-rings, hoses, gaskets, linings, diaphragms, seals

What's important for optimum performance?

- Broad chemical resistance
- · Long-term durability
- Excellent heat resistance
- Purity requirements

Fluid Handling and Environmental Control Systems

Pumps, valves, tubing, hose, diaphragms, expansion joints and membranes constructed of Dyneon™ Fluoroelastomers exhibit improved chemical and heat resistance as well as long-term durability in the presence of corrosive materials.

Applications

Valve seats/liners, pipe gaskets, packings, pump seals, tank liners, expansion joints

What's important for optimum performance?

- Chemical resistance
- Adhesion to metal substrates
- Durability
- Durometer of the part

Oil, Gas & Mineral Extraction

From down-hole drilling to pipeline distribution systems, Dyneon[™] Fluoroelastomers offer process equipment designers and manufacturers a variety of sealing and containment solutions for aggressive environments such as sour oil and gas, amine corrosion inhibitors, acids and steam.

Applications

Down-hole packers – permanent or retrievable, safety valves, plugs, sliding sleeves, v-packing, T-seals, molded seals

What's important for optimum performance?

- Chemical resistance to production fluids, injection fluids, etc.
- Resistance to produced gases H₂S, CO₂, etc.
- Volume swell and property changes over time and temperature range
- Resistance to explosive decompression

.....

• Adhesion to metal substrates

DID YOU KNOW...

- Dyneon™ FG Elastomers for seals, pump linings, etc., comply with US Food and Drug Administration (FDA) regulation 21 C.F.R. 177.2600 (c)(4)(i).
- Solvent coatings can be screen printed, roll coated, spray coated or dip coated.
 These coatings are thin, flexible and offer excellent chemical and heat resistance.
- Increasing the crosslink density of the fluoroelastomer can increase the resistance to explosive decompression.

Specialty Applications

Dyneon offers over 50 grades of fluoroelastomers with varying monomer composition, mooney viscosity and fluorine content. This broad offering combined with Dyneon's expertise in application and product development translates into greater design flexibility. From coatings to calendared sheets, tubing to molded goods, Dyneon has a solution for your specialty application. Please contact us directly to discuss your needs.

What is the Manufacturing Process?

Processing Considerations

The type of manufacturing process you plan to use to produce your part will have an impact on the fluoroelastomer you choose.

Dyneon[™] Bisphenol-cured Fluoroelastomers are considered by many to be the best-processing fluoroelastomers on the market today. We offer a large selection of incorporated cure gums to help you develop the most robust compound for your process.

What's important for optimum performance?

- Mooney viscosity
- Cure speed
- Scorch safety
- Flow rates
- Demoldability

Manufacturing Processes

Injection Molding

Choose a low to medium viscosity (20 to 60 MV) gum with excellent scorch safety and a fast cure. (See Multifunctional Improved Productivity (MIP) Products section below.)

Transfer Molding

Choose a low to medium viscosity (20 to 60 MV) gum with good scorch safety to avoid curing in the transfer pot.

Compression Molding

Choose a medium to high viscosity (50 to 90 MV) gum with a fast cure cycle.

Extrusion

Choose a low viscosity (20 to 40 MV) gum with good scorch safety. Many times process aids can be used to improve flow and surface smoothness, but are not always necessary.

Coating

Solution viscosity is determined by the solvent used and filler level. Solution stability (pot life) is of key concern. (See MIP products section below.)

Post Curing

To achieve the maximum in physical properties, post curing of fluoroelastomer parts is recommended. A typical post cure cycle is 16 hours at 232°C (450°F). However, the post cure time and temperature can be varied to optimize finished part properties, manufacturing process flow targets and cost. For some applications, a post cure may not be necessary.

Additional Information

For additional information on processing Dyneon[™] Fluoroelastomers, see the following publications (also available at **www.dyneon.com**).

Compounding Dyneon™ Fluoroelastomers

Processing Dyneon™ Fluoroelastomers

Sources of Food Grade Acid Acceptors and Fillers

DID YOU KNOW...

- Post cure is critical for optimum performance and optimum compression set.
- Fluoroelastomers can be calendared to <0.25 mm thickness.
- Fluoroelastomers offer excellent resistance to weathering, including UV resistance.

Multifunctional Improved Productivity (MIP) Products

Dyneon[™] MIP Fluoroelastomers include a proprietary cure technology that dramatically opens the processing window. Using this technology, Dyneon can customize a polymer to meet your needs. Dyneon[™] MIP technology offers many advantages as shown in the graphic.

Advantages of Dyneon™ MIP Fluoroelastomers

We can tailor MIP fluoroelastomers for your process needs.

What is the Part Profile?

Key Considerations for Molded Shapes

Molded goods fall into two main categories: Complex shapes and bonded seals.

When molding complex shapes, the following parameters should be considered:

- What is your manufacturing process?
- What is the geometry of the part are there undercuts?
- Mold release
- Hot tear strength
- Chemical and heat resistance
- Low temperature performance

Additional considerations for bonded seals are:

- Adhesion (to the substrate)
 requirements
- Post cure conditions

Transfer and Injection Molding Compression Molding Best FE 5622 FC 2144 compression set Fastest FE 5622 cure speed FE 5642 (Cure temp. must be >190°C) Best hot tear strength -FC 2122* FC 2152*

Choosing Dyneon[™] Fluoroelastomers

for molded shapes by key properties

*Not recommended for bonded seal applications

Choosing Dyneon™ Fluoroelastomers for molded shapes by processing method

www.dyneon.com

DID YOU KNOW...

 Fluoroelastomers can be formulated to offer a compression set of less than 10%.

Key Considerations for O-rings

The most important consideration for an o-ring application is usually the compression set. As a general rule, the higher the viscosity of the fluoroelastomer, the lower the compression set.

Viscosity can be an important consideration when choosing Dyneon[™] Fluoroelastomer grades that will be injection molded.

FE 5620Q and FE 5621 are suitable for injection molding and offer excellent compression set resistance.

The following chart shows the available Dyneon[™] Fluoroelastomers with their respective fluorine contents and applicability to various processing techniques.

Choosing Dyneon[™] Fluoroelastomers for o-rings by processing method*

*For additional base resistance, we recommend BRE 7131X and BRE 7231X

1FKM Terpolymers 1Low Temp FKM

1FKM Dipolymers

Key Considerations for Extruded Shapes

Fluoroelastomer hose is used in a variety of applications – from automotive fuel line and turbocharger hose to extruded o-ring cord.

What's important for optimum performance?

- Flexibility
- Chemical resistance, in particular permeation resistance
- Fluid pressure
- Material and surface hardness
- · Sealability at the hose ends
- Performance over service temperature range
- Extrudate surface requirements

Choosing Dyneon[™] Fluoroelastomers for extruded shapes by permeation

*Equivalent to FX 2530R

DID YOU KNOW...

• For hose applications, consider using FE 5830Q. This product offers excellent processing as well as low permeation and volume swell.

Typical Physical Properties (Data not for specification purposes)

INCORPO	RATED C	JRE	FLUC	DROELAS	STON	IERS						Ар	plications			Product Distinctions
Product	Test Compound (75+/-5 Duro)	%F	S.G.	Mooney Viscosity (ML1 + 10 @ 121°C)	TR10 (°C)	Tensile psi (MPa)	Elong %	100% Modulus psi (MPa)	Compression Set ASTM D395 Method B (70 hrs @ 200°C)	O-rings	Bonded Seals	Molded Shapes	Hoses/ Extrusions	Coatings	Composites/ Sheet Goods	
FC 2110Q	I	65.9	1.80	17(1)	-18	2010 (13.8)	170	950 (6.5)	19							Very low viscosity dipolymer for blending and viscosity modification. Suggested alternative: FE 5610.
FC 2120	I.	65.9	1.80	23	-18	2140 (14.7)	200	850 (5.9)	16				•		•	Low viscosity dipolymer designed for extrusion and calendaring applications.
FC 2121	I	65.9	1.80	24	-18	2375 (16.4)	180	1025 (7.1)	14	•						Low viscosity dipolymer for o-rings. Suggested alternative is FE 5620.
FC 2122	1	65.9	1.80	25	-18	1900 (13.1)	310	520 (3.6)	25			•				Low viscosity dipolymer for complex custom shapes. Suggested alternative: FE 5622.
FC 2123	1	65.9	1.80	25	-18	2350 (16.2)	270	530 (3.7)	20		•	•				Low viscosity dipolymer for bonded seals. Suggested alternative: FE 5622.
FC 2144	ļ.	65.9	1.80	41	-18	2540 (17.5)	260	550 (3.8)	17		•	•				Intermediate viscosity dipolymer for bonded seals. Intermediate viscosity version of FC-2123. Suggested alternative: FE 5642.
FC 2146X		65.9	1.80	46	-18	2500 (17.2)	280	550 (3.8)	15		•	•				Lower shrinkage version of FC-2144.
FC 2152	1	65.9	1.80	51	-18	2100 (14.5)	305	550 (3.8)	22			•				Intermediate viscosity dipolymer for custom shapes. Intermediate viscosity version of FC-2122. Suggested alternative: FE 5622.
FC 2174		65.9	1.90	40	-18	2450 (16.9)	180	1050 (7.2)	12							Intermediate viscosity dipolymer for o-rings. Suggested alternative: FE 5640.
FC 2176		65.9	1.80	30	-18	2175 (15.0)	240	600 (4.1)	22			•				Intermediate viscosity dipolymer for general purpose use. Well suited for autoclave curing.
FC 2177	(2)	65.9	1.80	33	-18	1865 (12.8)	240	700 (4.8)	21		•	•				Intermediate viscosity dipolymer for bonded seals. Slower cure and excellent tear strength.
FC 21/9		65.9	1.80	80	-18	24/5 (17.1)	180	1100 (7.6)	10	•						High viscosity dipolymer for o-rings. Suggested alternative: FE 5660.
FC 2180		65.9	1.80	40	-18	2370 (16.3)	180	1025 (7.1)	12	•						Lower shrinkage version of FC 21/4. Suggested alternative: FE 5621.
FC 2181		65.9	1.80	44	-18	2560 (17.6)	240	690 (4.8)	13	•		•				Intermediate viscosity version dipolymer with excellent compression set. Suggested alternative: FE 5642.
FE 5520X		65.5	1.80	26	-19	2000 (13.8)	1/5	900 (6.2)	20	•		•				Low viscosity, low fluorine (65.5%) terpolymer for improved low temperature flexibility.
FE 5540X		65.5	1.80	40	-19	2100 (14.5)	180	1050 (7.2)	18	•		•				Intermediate viscosity, low fluorine (65.5%) incorporated cure terpolymer for improved low temperature flexibility.
FE 5610		65.9	1.80	170	-18	1930 (13.3)	210	800 (5.5)	21					•		Very low viscosity dipolymer for blending and viscosity modification.
FE 56200		65.9	1.80	23	-18	2240 (15.4)	195	950 (6.5)	13	•						Low viscosity dipolymer for o-rings.
FE 5621		65.9	1.80	23	-18	2240 (15.4)	195	950 (6.5)	13	•						Low shrinkage version of FE 5620.
FE 56220	1	65.9 CE 0	1.80	22	-18	2350 (16.2)	250	/00 (4.8)	12		•	•				Low viscosity dipolymer for custom snapes and bonded seals.
FE 5623	1	65.9	1.80	24	-18	2300 (15.8)	180	1030 (7.1)	13							Faster curing version of FE 5620 and FE 5621.
FE 5640Q	1	65.9	1.80	40	-18	2370 (16.3)	105	1050 (7.2)	11	•						Intermediate viscosity dipolymer for o-rings.
FE 5041Q		65.9	1.80	40	-18	2340 (16.1)	185	970 (6.7)	17							Low shrinkage version of FE 5622. Use for sustem shares and handed sock
FE 5042		65.9	1.80	42	-18	2530 (17.4)	190	/10 (4.9)	11							Easter auring version of FE 5640 and FE 5641
FE 5043Q		65.0	1.00	40	-10	2400 (16.5)	200	1150 (7.7)	1							High visconity disclutter of right
FE 50000	1	60.2	1.00	26	-10	2400 (10.5)	200	275 (2.6)	45							High viscosity dipolymer for extrusion applications. No process aid required when properly compaunded
FE 50200	1	70 5	1.07	22	-12	1600 (11.0)	250	575 (2.0) 640 (4.4)	45							Low viscosity terpolymer for extrusion applications. No process and required when property compounded.
FE 58400	(3)	70.5	1.90	33	-/	2000 (13.8)	210	040 (4.4)	26							Intermediate viscosity high fluering templymer for a rings and custom shapes
FG 56300	1	65.9	1.00	30	-18	2140 (14.7)	210	810 (5.6)	13							Low viscosity incorporated cure dipolymer for food grade applications. Excellent compression set resistance
FG 5661X	1	65.9	1.80	60	-18	2740 (14.7)	193	1008 (6.9)	14							Intermediate viscosity, incorporated cure dipolymer for food grade applications. Excellent compression set resistance.
FG 56900		65.9	1.80	97	-18	2223 (15.3)	200	1030 (6.9)	10							High viscosity, incorporated cure dipolymer for food grade applications. Excellent compression set resistance.
FLS 2530	1	69.0	1.85	39	-8	2200 (15.2)	255	700 (4.8)	19							Intermediate viscosity dipolymer for general nurgose
FT 2320		69.0	1.86	23	-12	2000 (13.2)	230	750 (5.2)	39							Low viscosity templymer designed for extrusion and calendaring applications
FT 23400	1	68.6	1.86	19	-1/	2030 (14.0)	300	508 (3.5)	33							Intermediate viscosity terpolymer
FT 2350	1	68.6	1.86	56	-14	2210 (15.2)	310	540 (3.7)	36							Intermediate viscosity terpolymer.
EX 2530B	T	69.0	1.85	39	-8	2200 (15.2)	255	700 (4.8)	19							Intermediate viscosity dipolymer for general purpose
FX 3734	i i	68.6	1.86	42	-13	2300 (16.0)	260	650 (4.5)	23		•					Intermediate viscosity terpolymer designed for bonded seals
FX 3735	I	68.6	1.86	42	-13	2150 (15.0)	310	520 (3.6)	36							Intermediate viscosity terpolymer designed for bonded seals
FX 9194	i i	68.6	1.86	45	-13	2450 (17.0)	270	850 (6.0)	20							High viscosity terpolymer. Blend to increase viscosity and green strength
FX 11818	Î.	68.6	1.86	28	-14	1800 (12 4)	290	490 (3.4)	34							Low viscosity version of FT 2350
17(11010		00.0	1.00	20	1 7	1000 (12.4)	200	100 (0.4)	U r				-			

See page 13 for additional footnotes and Test Compounds Charts.

BASE RE	BASE RESISTANT ELASTOMERS											А
	Test Compound			Mooney Viscosity	TR10	Tensile	Elong	100% Modulus	Compression Set ASTM D395 - Method B	Le gener	Bonded	Molded
Product	(75+/-5 Duro)	%F	S.G.	(ML1 + 10 @ 121°C)	(°C)	psi (MPa)	%	psi (MPa)	(70 hrs @ 200°C)	O-rings	Seals	Shapes
BRE 7131X ⁽⁵⁾	1	60.0	1.60	34	-1	1800 (12.4)	200	800 (5.5)	34		•	•
BRE 7132X(5)	1	60.0	1.60	34	-1	2000 (13.8)	170	1200 (8.9)	34	•		•
BRE 7231X ⁽⁵⁾	1	60.0	1.60	34	-9	1900 (13.1)	200	800 (5.5)	34		•	•

DYNEON™ FLUOROELASTOMER RAW GUMS

Product	Test Compound (75+/-5 Duro)	%F	S.G.	Mooney Viscosity (ML1 + 10 @ 121°C)	TR10 (°C)	Tensile psi (MPa)	Elong %	100% Modulus psi (MPa)	Compression Set ASTM D395 - Method B (70 hrs @ 200°C)	O-rings	Bonded Seals	Molded Shapes
FC 2145	11	65.9	1.80	28	-18	1765 (12.2)	184	805 (5.5)	16			
FC 2178	11	65.9	1.80	100	-18	2275 (15.7)	177	1065 (7.3)	10			
FC 2210X		66.0	1.80	2	200 Poise	e at 105°C, spir	ndle #27,	18.7 g, 5 rpm				
FC 2211	ii ii	65.9	1.80	20 ⁽¹⁾	-18	1870 (12.9)	180	600 (4.1)	17			
FC 2230	11	65.9	1.80	38	-18	1995 (13.7)	165	972 (6.7)	15			
FC 2260 ⁽⁶⁾	III	65.9	1.80	60	-18	2345 (16.2)	225	745 (5.1)	25			
FC 2261Q	11	65.9	1.80	63	-18	1870 (12.9)	240	630 (4.3)	14			
FE 5522X	1	65.5	1.8	29	-19	2000 (13.8)	175	950 (6.5)	20			
FE 5542X	1	65.5	1.8	42	-19	2100 (14.5)	180	1000 (6.9)	18			
FLS 2640Q	III	70.1	1.89	48							Raw gums c	an be compo
FLS 2650 ⁽⁶⁾	111	70.3	1.89	50	-7	2600 (18.0)	230	780 (5.3)	28			
FT 2430	11	68.6	1.86	31	-14	1950 (13.4)	255	340 (2.3)	38			
FT 2481	11	68.6	1.86	75	-14	2200 (15.2)	220	799 (5.5)	24			

MIP PRO	MIP PRODUCTS											A
Product	Test Compound	% E	SG	Mooney Viscosity	TR10	Tensile	Elong	100% Modulus	Compression Set ASTM D395 - Method B	Q-rings	Bonded Seals	Molded Shapes
MIP 8640X		65.9	1.80	43	-18	2177 (15)	175	1016 (7)	16	•	•	•

LOW TEN	IPERATU	RE F	LUO	ROELAST	OME	RS						A
	Test Compound			Mooney Viscosity	TR10	Tensile	Elong	100% Modulus	Compression Set ASTM D395 - Method B		Bonded	Molded
Product	(75+/-5 Duro)	%F	S.G.	(ML1 + 10 @ 121°C)	(°C)	psi (MPa)	%	psi (MPa)	(70 hrs @ 200°C)	O-rings	Seals	Shapes
LTFE 6400X ⁽⁶⁾	V	67.1	1.86	85	-40	1965 (13.7)	180	775 (5.4)	26		LTFE 6400X ca	an be compou

Footnotes to product tables

 ⁽¹⁾ Mooney viscosity at 100°C (212°F) ⁽²⁾ MgO at 9 phr ⁽³⁾ Durometer equals 84 	Data not for specification purposes. All test compounds are based on mill-mixed batches.	Base resistant elastomer compounds press cured 10 minutes @ 177°C; postcured 16hrs @ 200°C.
⁽⁴⁾ Raw Gum ⁽⁵⁾ Incorporated Cure ⁽⁶⁾ Peroxide Cure	Fluoroelastomer compounds press cured 7 minutes @ 177°C; postcured 24hrs @ 250°C.	Raw gums not cured unless noted.

Test Compounds	1	Ш	ш	IV	v
Polymer	100	100	100	100	100
Phosphonium Accelerator		0.5			
Dihydroxy Crosslinker		2			
MT Black (N990)	30	30	30	25	50
MgO	3	3			
Ca(OH)2	6	6	3		
Varox [™] DBPH-50 Peroxide			2.5		2.5
Triallyl isocyanurate (TAIC)			2.5	5	1.8
Percadox 14				1	
Sodium sterate				1	-
Zinc Oxide					5

pplications	Product Distinctions
Hoses/ Composites/ Extrusions Coatings Sheet Goods	
	Incorporated cure terpolymer for bonded seals and complex shapes. Better base resistance than BRE 7231X.
	Incorporated cure terpolymer for o-rings and other shapes. Better base resistance than BRE 7231X.
	Incorporated cure terpolymer for bonded seals and complex shapes. Better low temperature flexibility than BRE 7100 series products.
pplications	Product Distinctions
Hoses/ Composites/ Extrusions Coatings Sheet Goods	
	Low viscosity dipolymer for blending to improve flow and in coatings.
	Very high viscosity dipolymer, used for increasing viscosity and green strength
	Extremely low viscosity dipolymer for viscosity modification
	Very low viscosity dipolymer for blending and coatings
	Intermediate viscosity dipolymer used for property modification
	High viscosity peroxide-curable dipolymer. Could be used for co-vulcanizable blends with other elastomers
	High viscosity dipolymer used for increasing viscosity and green strength
	Low viscosity, low fluorine (65.5%) ternolymer for improved low temperature flexibility. Use with other FE 5500 series products
	Intermediate viscosity, low fluorine (65.5%) ternolymer for improved low temperature flexibility. Use with other FE 5500 series products
unded to meet all of these applications	High fluorine intermediate viscosity ternolymer
unded to meet an or these appreations.	High historicity peroxide curable terpolymer
	Intermediate viscosity ternolymer. Blend to improve flow or use for coatings
	High viscosity terpolymer. Blend to increase viscosity and green strength
pplications	Product Distinctions
Hoses/ Composites/ Extrusions Coatings Sheet Goods	
	Medium viscosity dipolymer with best overall flow properties.
pplications	Product Distinctions
Hoses/ Composites/ Extrusions Coatings Sheet Goods	
ounded to meet all of these applications.	Excellent low temperature sealing capability, excellent fuel and oil resistance and good compression set resistance.

Enabling Technologies

Over the years, our Application and Product Development professionals have developed a variety of "enabling technologies" that enhance the use of our fluoroelastomers and help make your operations more productive.

Dynamar[™] Elastomer Processing Additive (FC 2171)

is designed to enhance the processing of bisphenol-cured fluoroelastomers by offering reduced mill sticking, improved mold release (levels < 5 phr) and faster extrusion rates (at levels > 10 phr).

Dynamar[™] Rubber Curatives (FC 5157, FX 5166 and RC 5251Q) are designed as a currative package to be added to ECO,

currative package to be added to ECO, NBR or NBR/PVC to enhance bonding of these materials to bisphenol-cured FKMs without the need for external bonding agents. This package, when added to non-lead containing ECO compounds, allows the processors to eliminate lead from their formulations, yet maintain excellent heat-age properties.

Bonding Technology

Dyneon has a wide array of bonding technologies that allow processors to bond fluoroelastomers and fluoroplastics to a wide variety of metal and non-metal substrates (i.e. VMQ, ECO, NBR, NBR/ PVC, HNBR, FP, etc.). This technology is well demonstrated in current commercial hose constructions but is also applicable to other composite structure needs.

Dyneon also offers primerless technology that can enable bonding to various steel substrates without the need for external priming or bonding agents. This can offer significant processing savings. This technology is particularly attractive for Multi-Layered Steel (MLS) cylinder head gasket constructions.

.....

Material Characterization

We recognize that our ability to provide information about how our fluoroelastomers will perform in certain applications is key to our success as a fluoropolymer supplier. For this reason, Dyneon has invested considerable time and effort in the areas of Permeation testing and Compression Stress Relaxation (CSR) testing.

Permeation Testing

With the advent of new global regulations restricting the amount of evaporative emissions allowed by automobiles it is becoming increasingly important to understand and develop permeation measurement techniques that allow for accurate characterization of a polymer or part. Dyneon is recognized in the automotive industry for its expertise and developments in permeation test methodologies that yield results that are accurate, reproducible and scaleable to commercial constructions. Please see SAE Technical Papers 2000-01-1096 and 2001-01-1126 for additional information.

Compression Stress Relaxtion (CSR)

.....

Dyneon recognizes the value of CSR as a tool for the design engineer to make an informed decision about the best fluoroelastomer for the application as well as the predictive information it provides about long-term performance. Dyneon has designed a low-cost test fixture which is small, easy to use and most importantly, yields accurate and reproducible results. Please see SAE Technical Papers 2000-01-0752, 2001-01-0742 and 2003-01-0946 for additional information.

Permeation test jig

CSR test jigs

In summary, we welcome the opportunity to work with you to review your operations and have our experts suggest ways (from optimized post cure to polymer handling) that could improve your polymer processing.

Glossary of Terms

BRE Grades – Dyneon's line of Base Resistant Elastomers based on combinations of tetrafluoroethylene, propylene and vinylidene fluoride monomers. These products typically contain cure packages that are unique to Dyneon and yield products that process similar to our standard FKM's. They typically offer enhanced chemical resistance to aggressive lubricants.

Brittle Point* – The highest temperature at which a cured rubber part will fracture under sudden impact and specified test conditions.

CE10 – A mixture of 90% RFC and 10% Ethanol.

CM15 – A mixture of 85% RFC and 15% Methanol.

Compound* – An intimate mixture of a polymer(s) with all the ingredients necessary for the finished article. Sometimes call stock.

Compression Set* – The residual deformation of material after removal of the compressive stress. Generally obtained after stress was applied for a given length of time at a specified temperature.

Compression Stress Relaxation (CSR) – The measurement of a material's ability to be compressed and maintain the resultant sealing force over a range of environmental conditions.

Cross Linking* – When chemical bonds set up between molecular chains, the material is said to be cross linked. Once cross linked, materials cannot be reprocessed. A form of curing.

Curing Agent* – A chemical that will cause cross linking to occur.

Durometer* – An instrument for measuring the hardness of rubber and plastics. "A" Durometer is used for flexible materials the "D" for rigid materials.

Durometer Hardness* – An arbitrary numbering scale that indicates the resistance to indentation of the indentor point of the Durometer. High values indicate harder materials. The value may be taken immediately (highest point) or after a very short specified time.

Elastomer* – A polymeric material which, at room temperature, is capable of recovering substantially in shape and size after removal of a deforming force. This generally refers to a synthetic polymer as opposed to rubber, which preferably indicates the natural product.

Elongation* – Extension produced by tensile stress, usually expressed as a percent of original unit length.

Elongation, Ultimate* – The elongation at time of rupture.

FC Grades - Dyneon's line of dipolymer products based on combinations of vinylidene fluoride and hexafluoropropylene monomers. Some of these products contain incorporated cure packages. Many of these products have alternative counterparts in our FE or MIP product lines that may offer improved processibility.

FE Grades - Dyneon's line of dipolymer or terpolymer products based on combinations of vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene monomers. This family of products was designed to offer improved processing characteristics over our FC grades. They are based on cure systems and modified polymers designed to yield improved scorch safety, mold release characteristics and improved processing in fabrication processes such as injection molding and extrusion. **FG Grades** – Dyneon's line of incorporated cure, dipolymer products based on vinylidene fluoride and hexafluoropropylene that comply with US Food and Drug Administration (FDA) regulation C.F.R. 177.2600 (c)(4)(i). The cure system incorporated into these products, offers excellent moldability including scorch safety and mold release characteristics.

FLS Grades - Dyneon's line of high fluorine content terpolymers based primarily on vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene monomers. Due to the higher % fluorine in these products, they typically offer improved chemical resistance over lower fluorine containing terpolymers or dipolymers.

FKM – ASTM designation for fluoroelastomers.

Glass Transition Point* – Temperature at which a material loses its glasslike properties and becomes a semi-liquid.

Heat Aging* – When specimens of vulcanized rubber are given accelerated aging in air or oxygen at elevated temperatures and in some cases, pressure for specified periods of time. The deterioration is generally noted as a percent change from originally measured properties.

LTFE Grades- Dyneon's Low Temperature Fluoroelastomers, offering excellent low temperature sealing capability, excellent fuel and oil resistance, and low compression set resistance in peroxidecured fluoroelastomers.

Low Temperature Flexibility* – The ability of a rubber product to be flexed, bent or bowed at specified temperatures without loss of serviceability.

MIP Grades – Dyneon's line of Multifunctional Improved Productivity fluoroelastomers offering improved flow properties, faster cure times and excellent processability.

Mold Shrinkage* – The difference in dimensions, expressed in inches per inch, between a molding and the mold cavity in which it was molded, both the mold and the molding being at room temperature when measured.

Mooney Scorch* – A procedure for determining the cure characteristics of a compound using the Mooney Viscometer, generally at specified elevated temperatures. The values versus time are recorded or plotted and the time values reported when the viscosity values have increased 5 and 30 points above the minimum.

Oil Resistance* – The ability to withstand swelling and deterioration by a specified oily liquid for a specified time and temperature.

Peroxide* – A compound containing a bivalent —O—O— group in the molecule. They are strong oxidizing agents and are very reactive (examples: benzoyl peroxide, dicumyl peroxide). Used in polymerization reactions and for cross-linking agents.

Post Cure* – Heat or radiation treatment, or both, to which a cured or partially cured thermosetting plastic or rubber composition is subjected to increase the state of cure or enhance the level of one or more properties.

Press Cure* – Vulcanization in a mold in a press.

Processability* – The relative ease with which raw or compounded rubber can be handled in rubber machinery.

RFC - A mixture of 50% Toluene and 50% IsoOctane.

Strain* – Deformation resulting from a stress.

Stress* – Force per unit of original cross sectional area that is applied to a part or specimen.

Stress Relaxation* – The time dependent decrease in stress for a specimen at constant strain.

Thermogravimetric Analysis

(TGA)* – A test procedure used to determine the thermal stability or composition of a material. Tow modes are possible: determining the change of weight of a specimen while changing temperature at a given rate, or the change of weight of a specimen with time at a fixed temperature.

Temperature Retraction (TR) Test* -

A method for evaluating the low temperature characteristics of a vulcanized part by measuring the temperature at which retraction over the range of 10 to 70% of original elongation occurs. The test is generally employed to determine the susceptibility of a rubber to crystallize. The specimen is stretched at room temperature, cooled to very low temperature, released and warmed at a uniform rate.

Tensile Strength* – The maximum tensile stress applied during stretching of a specimen to rupture.

*Source:

The Language of Rubber, Automotive Elastomers & Design, March 1982

Notice:

Chrysler is a trademark of Chrysler Corporation Unocal is a trademark of Union Oil Company Mobil 1 is a trademark of Mobil Oil Corporation Dexron is a trademark of General Motors Corporation

Texaco is a trademark of Texaco, Inc. Corporation Exxon is a trademark of Exxon Corporation Amoco is a trademark of Amoco Oil Company Wagner is a trademark of Moog Automotive Products, Inc.

Castrol is a trademark of Castrol LLC Delco and Dex-Cool are trademarks of General Motors Corporation

Caterpillar is a trademark of Caterpillar, Inc. Valvoline and Zerex are trademarks of Ashland Oil, Inc. Corporation

Prestone is a trademark of Prestone Products Corporation

Varox is a trademark of R.T. Vanderbilt Company, Inc. Corporation

Imaginative fluoropolymer solutions

At Dyneon, our goal is to provide you with design solutions to make your job easier – helping you with material selection now so that you can avoid problems later.

Whatever your challenge, you can count on Dyneon to respond with dependable, high-performance fluoropolymer products. By working directly with our customers and exploring new technologies, you can be sure that our fluoropolymers will not only meet today's needs, but future design requirements as well.

Our worldwide commitment to quality

Indicative of our commitment, most Dyneon design, development, production and service facilities have achieved a global ISO 9001:2000 quality management certification. One of our Decatur, Alabama sites and all Germany locations, as well as the production facilities at Antwerp, Belgium have also received ISO 14001 certification for their environmental management system. And, our Aston, Pennsylvania PTFE custom compounding facility has A2LA accreditation for its quality control laboratory.

The Dyneon Product Portfolio:

Dyneon™

PTFE, TFM™ PTFE, Custom PTFE Compounds

Dyneon™ PFA, FEP, ETFE, HTE, PVDF, THV™ Fluorothermoplastics

Dyneon™

Fluoroelastomers, Base Resistant Elastomers (BREs), Low Temperature Fluoroelastomers (LTFEs), Perfluoroelastomers, Multifunctional Improved Productivity (MIP) Fluoroelastomers

Dyneon™

Polymer Additives

Dynamar™ Polymer Processing Additives

Dynamar™ Elastomer Additives

Dyneon™ Monomers

IMPORTANT NOTICE

Because conditions of product use are outside Dyneon's control and vary widely, user must evaluate and determine whether a Dyneon product will be suitable for user's intended application before using it. The following is made in lieu of all express and implied warranties (including warranties of merchantability and fitness for a particular purpose): If a Dyneon product is proved to be defective, Dyneon's only obligation, and user's only remedy, will be, at Dyneon's option, to replace the quantity of product shown to be defective when user received it or to refund user's purchase price. In no event will Dyneon be liable for any direct, indirect, special, incidental, or consequential loss or damage, regardless of legal theory, such as breach of warranty or contract, negligence, or strict liability.

Technical information, test data, and advice provided by Dyneon personnel are based on information and tests we believe are reliable and are intended for persons with knowledge and technical skills sufficient to analyze test types and conditions, and to handle and use raw polymers and related compounding ingredients. No license under any Dyneon or third party intellectual rights is granted or implied by virtue of this information.

Dyneon Customer Service

Europe	Phone: Fax:	00 800 396 366 27 00 800 396 366 39
Italy	Phone: Fax:	00 800 7 910 18 00 800 7 910 19
USA	Phone: Fax:	+1 800 810 8499 +1 800 635 8061

Dyneon LLC

6744 33rd Street North Oakdale, MN 55128 Toll Free: +1 800 723 9127 Phone: +1 651 733 5353 Fax: +1 651 737 7686

Dyneon GmbH & Co. KG

Carl-Schurz-Strasse 1 D-41453 Neuss Germany Phone: +49 2131 14 2265 Fax: +49 2131 14 3857

Dyneon N.V.

Canadastraat 11, Haven 1005 B-2070 Zwijndrecht Belgium Phone: +32 3 250 7537 Fax: +32 3 250 7905

Dyneon GmbH & Co. KG

UK Branch Office 3M Centre Cain Road Bracknell Berkshire RG 12 8HT United Kingdom Phone: +44 13 44 429675 Fax: +44 13 44 427904

Dyneon GmbH & Co. KG

Succursale France Boulevard de l'Oise, Tour 3M F-95006 Cergy Pontoise Cedex France Phone: +33 1 3031 6611 Fax: +33 1 3031 6613

Dyneon GmbH & Co. KG

Sede Secondaria Italia Via San Bovio, 3 Milano San Felice I-20090 Segrate (MI) Italy Phone: +39 02 7035 3206-7 Fax: +39 02 7035 3208

Sumitomo 3M Limited

33-1 Tamagawadai 2-chome Setagaya-ku, Tokyo 158 Japan Phone: +81 3 3709 8111 Fax: +81 3 3709 8743

3M China Limited

10/F, New Town Mansion 55 Loushanguan Road Shanghai 2003356 P.R.C. Phone: +86 21 6275 3535 Fax: +86 21 6275 2343

3M Brazil

Via Anahnguera, km 110 Sumaré, São Paulo (SP) CEP: 13181-900 Brazil Phone: +55 19 3838 6768 Fax: +55 19 3838 7828

3M Canada

1840 Oxford St. E. London, Ontario N5V 3R6 Canada Phone: + 800 265 1840 Fax: + 800 479 4453:

3M Korea

22 FI Dhit B/D 27-3 Yoido-Dong, Youngdungpo-Ku, Seoul Korea Phone: + 82 2 3771 4102 Fax: + 82 2 780 3650

www.dyneon.com

Dyneon is a 3M company.

Printed in USA. 98-0504-1569-8 Issued: 12/04. All rights reserved. Dyneon, TFM, THV and Dynamar are trademarks of 3M. Used under license.

© Dyneon 2004